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General non convex optimization problem



N(ϵ) ∼ ϵ−n/2
To find  global minimum in general one should takesϵ

Calculations of smooth  and its derivatives in requested point f

Bad news!

Note 1: Below we demonstrate «worth in the world» function philosophy 
 to obtained this bound 

Note 2:«Worth in the world» function in our case will be quasi-convex; the 
problem with this function is that we have only local oracle that return local 

information (value and (high-order) derivatives at the required point - 
nothing more). 







Sometimes tuned simulated annealing 
 works good in practice  

for significantly non-convex problems!



Wiener





Good news: sometimes it’s sufficient to find local minimum

Matrix completion problem



Let’s start with the problem: 
To find -stationary pointϵ

Local minimum belongs to the set of 
stationary points since we consider 

unconstrained problems 









Note: If  is small, gradient descent is not optimal, 
see https://arxiv.org/pdf/2001.02968.pdf for details 

n = dim x

https://arxiv.org/pdf/2001.02968.pdf




Local minimum belongs to the set of 
stationary points if we consider  

unconstrained problems.
But unfortunately, typically stationary point 
(extremum point) is saddle-point, that is far 
from to be local minimum. So we’d like to 
have guarantees to converge to local min.  

Fortunately, standard method (especially 
randomized ones) converges to local minimum. 
But could vast time in vicinity of saddle-point 













From the results above one may though, that 
if we have only one stationary point (= local 
minimum = global minimum), then it’s not a 

problem to find it. 

This is true if we mean criteria norm of the 
gradient, but this is in general false if we 

consider the criteria discrepancy in function!   









For the moment we consider the only first 
order method - gradient descent. It’s optimal 

for finding stationary points without any 
additionally assumptions on problem 

formulations (high-smoothness). But we know 
from convex optimization that momentum 

(impulse) schemes accelerate the convergence. 
What is about non-convex case?    



Visualization: https://distill.pub/2017/momentum/ 

https://distill.pub/2017/momentum/




The same results demonstrate heavy-ball method (with 
proper parameters) in average  

https://arxiv.org/pdf/2002.04664.pdf    

https://arxiv.org/pdf/2002.04664.pdf


No acceleration in theory for non convex 
problems, but sometimes  FGM works!    

Protein Docking as OPLS force field 
minimization problem



Data Science applications



Math. Statistic. point of view



Machine Learning point of view















Optimal variance reduced scheme for 
non convex sum-type smooth 

problems

SPIDER









Explain further





SPIDER

SAGA type method











But is convex case SpiderBoostM 
behaves like Accelerated method!





We’ve just talked about finding stationary 
points, but one can show that the developed 
methods can be modified in such a manner 
that we will have the same in terms of , 
 (up to a logarithmic factors) complexity 

(SAGA type method, SPIDER): 
 https://arxiv.org/pdf/1806.08782.pdf  
 https://arxiv.org/pdf/1807.01695.pdf  

ϵ
n

https://arxiv.org/pdf/1806.08782.pdf
https://arxiv.org/pdf/1807.01695.pdf


Unfortunately, variance reduced 
schemes in practice works typically 
worthier then tuned SGD and its 
(momentum) Adaptive variants! 





Idea of Adaptation 













Adam 
 - batched stochastic gradientgk



AMSGrad 



Second-order schemes 







For the moment we consider 
adaptive method for smoothness 
parameter . But what is about 

parameter ? 
L

r
To answer for this question let’s 
consider the simple SGD in convex 
case (accelerated and non-convex 

ones we briefly describe at the end) 









Note 1: If we want to estimate the rate of convergence we should 
additionally assume:  (V. Spokoiny et al., 2019)Lk+1 ≥ Lk

Note 2: We could take  // better in practicerk+1 = 2D0/(Lkϵ)







Note that if we don’t have an access to stochastic 
gradient, but have an access to realization (unbiased) 

 (see Data Science applications below), then in 
batched gradient descent and in (24) we may use (this 

formula works also in non smooth case!) 

f(x, ξ)

∇f(x, ξ := (ξ, e)) :≃ n
f(x + τe, ξ) − f(x − τe, ξ)

2τ
e

where  choses at random (ourselves) from the unit sphere 
or from coordinate orts. And we assume that  

parallel to  (sample of  at -th step) 
 arXiv:1707.08486 

e
xk+1 − xk

ek e k

The rate of convergence will be  times slower.∼ n

https://arxiv.org/pdf/1707.08486.pdf


Another way to choose 
 adaptively is to 

estimate in an adaptive manner :
rk+1 = 2Dk+1/(Lkϵ)

Dk+1

Dk+1 ≃
1

rk+1 − 1

rk+1

∑
l=1

∥∇f(xk, ξk+1,l) − ∇̄f(xk)∥2
2

∇̄f(xk) =
1

rk+1

rk+1

∑
l=1

∇f(xk, ξk+1,l)

Since we don’t know it advance  we put here  rk+1 rk+1 = rk /2
Close approach: https://arxiv.org/pdf/2005.01097.pdf  

These all hold true for gradient-free schemes (see above) 

https://arxiv.org/pdf/2005.01097.pdf


Data Science applications

In this case in (24): L = max
i=1,..,n

Li

∇f(x, ξ) = ∇fξ(x)

REMIND THAT:
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Acceleration (see Algorithm 3 below)











Practical aspects
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To apply M-S envelop for non-convex case  
we need one trick 

Popular nowadays Federated Learning


