Overview of non-convex
optimization and adaptive
methods for stochastic
optimization

Eduard Gorbunov (MIPT ed-gorbunov@yandex.ru)
Gasnikov Alexander (MIPT gasnikov@yandex.ru)

mailto:ed-gorbunov@yandex.ru
mailto:gasnikov@yandex.ru

Main references:

Bottou L., Curtis F.E., Nocedal J. Optimization methods for large-scale
machine learning // arXiv.org e-Print archive. 2016. — URL:
https://arxiv.org/pd/1606.04838.pdf

Jain P., Kar P. Non-convex optimization for machine learning // arXiv.org
e-Print archive. 2017. — URL: https://arxiv.org/pdi/1712.07897.pdf

Lan G. Lectures on optimization. Methods for Machine Learning // e-print,
2019. — URL: http://pwp.gatech.edu/guanghui-lan/wp-
content/uploads/sites/330/2019/02/LectureOPTML.pdf

Ruder A. An overview of gradient descent optimization algorithms //
arXiv.org e-Print archive. 2017. — URL:
https://arxiv.org/pdi/1609.04747.pdf

Wright S. Optimization algorithms for Data Science // IAS/Park City Math-
ematics Series. — 2016. URL: http://www.optimization-
online.org/DB_FILE/2016/12/5748.pdf

General non convex opfimization problem

min f(x)

xEeR”"

L \-_::Ll cos(2rx;)

f(x) =204 e — 20¢ en
Dimensions: n
Domain: 32.768 < x; < 32.768
Global Optimum: flx) =0.0at z = (0.0.0.0..... 0.0)
Operator: AckleyEvaluator
Charts:

an
A ,"‘l. ,;o

(a) [-32.768, 32.768] (b) [-6.0, 6.0

Figure 1: Ackley function plots.

Figure:
https://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/Reference

Bad news!

To find € global mintmum 1n general one should takes

N(G) ~ € —n/2

Calculations of smooth f and tts dertvatives tn requested point

Note 1: Below we demonstrate <worth in the world» Function philosophy
fo obtained this bound

Note 2:<Worth tn the world» Function tn our case will be quasi-convex; the
problem with this function 1s that we have ouly local oracle that return local
nformation (value and (high-order) derivatives at the required point -
nothing more).

Lower bound for global optimization

f(x) > min,.

Assume that for x,y e[0,1]
V£ (y)=VF (x)], < LIy =,
Let’s divide cube [0,1]" on small sub-cubes with side length

4./2¢/L.

Let’s put f (x) = (0 everywhere except one sub-cubes that was observed by

considered algorithm at the very end.

Lower bound for global optimization

In this sub-cube we can determine f (x) such that:

min f(x)=-2¢.

xe[O,l]"

So to find such x" that guarantee (&-solution)

f(xN)—f(x*)Sg

algorithm need to visit each sub-cubes where f(x)=0 at least on time.

Therefore the lower bound on N 1s

N ~ (l/x/;)n ="

Sometimes tuned simulated annealing
works good tn practice
For significantly non-convex problems!

Simulated annealing

f(x) — min.

xeR"

The main idea: consider noisy dynamic dx/dt = —Vf (x):

dx (1) =—Vf (x)+~2Taw (1),

where W (2) — Wiener process. When 7 — oo one can prove that the distribu-

tion of vector x(t) tends to distribution with density function

exp(—f(x)/T) |
Jexp(=f (3)/T)y

When 7" — 0+ this distribution concentrate around global minimum x..

Simulated annealing (Langevin dynamics)

So we can consider

dx(t)==Vf (x)+2T (t)dW (1)

with different policy of choosing T'(7), such that,

T(t)——0+.

For example, in practice rather popular 1s the following strategy

T(t) B ln(26+t)'

Structural parameter c significantly affected on the global convergence.

Non asymptotic results see in Xu—Chen—Zou—Gu, NeurIPS, 2018 (7575).

Good news: sometimes it s sufficient to find local minimum

n ‘l‘i
1+ Z cos(—=)
1000 . LT

Dimensions: n M))
Domain: 600.0 < x; < 600.0 a ILYIX CoO W\P {-QILI oh PYO b LQW\
Global Optimum: f(x) =0.0at z = (0.0,0.0,...,0.0)
Operator: GriewankEvaluator
Charts:

i

160 F $‘ ™ \““\‘ \
! ’ poo?”
140 “.\ 0 0' l ‘\ \“
A “““ % “ X ‘o ‘ % 'o &) 0/ l; Il L.3F ‘ \) \ ““\‘
190 3 ¢ & Iy Q \
120 bk ; (T :\ o WX .“ otern et 0 - B \ .|\’ “
0 W \“‘\‘\“‘\.\“\‘\\',c‘.',‘,.“' OIS : J ML ‘““;

‘ \ ,
ol R | b ,\\'\\\\ “ \\ ! i \ \\\\, Vi Iﬂ
60 | X : : - \“ \vl/l ,\“) I”‘ ‘ | \ ‘ \\ ““\ \\\\V""/

;,, \\\\ “““\\

(a) [-600.0, 600.0] (b) [-10.0, 10.0]

Figure 4: Griewank function plots.

Figure:
https://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/Reference

Let s start with the problem:
To find e-stationary point

Local mintmum belongs to the setf of
stationary points since we consider

unconstrained problems

Gradient descent

f(x) - min.
dx
E = —Vf()C)

Let’s show that W (x) = f(x) is Lyapunov function:

dWE;(t)):<Vf(x(t)), d’;(tf)>:

Gradient descent

f(x) — min.

xeR"

Euler discretization of dx/dr =—Vf (x) has the form

X=Xt —th(xk)

What 1s about /2 ? Assume that for x,y e {x cR": f(x) < f(xo)}

IV (9)=VF (%)), < L]y =,

Then (this result can also be obtained from physical dimension considerations)

h=1/L.

Gradient descent

Since
2
()20 o)
we can conclude that (&-extremum)
min, |VF (=

when

2L(f(+)- £ (+))

2
E

N =

If there available 1mnexact gradient and (or) we have weaker assumption on

smoothness, see P. Dvurechensky (2017) and references therein.

Gradient descent
This bound

N ~ &7 (first-order method, Lipschitz gradient)

1s unimprovable up to a constant factor for arbitrary first-order method. But

if we assume high-order smoothness of f (x), then lower bound for ¢-

extremum will have the form (Carmon Y., Duchi J.C., Hinder O., Sidford A., 2017)

N ~ &* (first-order method, Lipschitz high-order derivatives).

Moreover, 1f we additionally can use p-order derivatives in algorithm, then

optimal bound will have the form (Birgin E., Gardenghi J., Martinez J. et al., 2016)

N ~ & "7 (1 _order method, Lipschitz p-order derivatives).

Note: [f n = dim x s small, gradient descent 1s not optimal,
see httes://arxiv.ora/pdf/2001.02968 .pdf for details

https://arxiv.org/pdf/2001.02968.pdf

Gradient descent
Let’s indicate the main drawbacks of these types of results:

1. The results are not global. Moreover, we cannot guarantee that we

can find even local minimum. Indeed (Yu. Nesterov, 2004), for

Flos) =2) o2 L)

choose x’ = (l,O)T, then x* -)(O,O)T — saddle-point.

k—

2. We consider unconstraint optimization problem. It’s significant! For

example, 1f we consider f (x) — nEnr]l , the lower bound for &-extremum
xe€| 0,1 "

has the form N ~ & (Yu. Nesterov, 2012).

Local mintmum belongs to the setf of
stationary points 1f we consider

unconstrained Probhms.
But unfortunately, typically stationary point
(extremum point) is saddle-point, that is far
From to be local minimum. So we 4 (ike to

have guarantees fo converge to local min.

Fortunately, standard method (especially
randomized ones) converges to local mintmum.

But could vast time tn vicimity of saddle-point

Convergence to local minimum

f(x) — min.

Following by Yu. Nesterov and B. Polyak (2006) let’s denote x" —(&,5) lo-

cal mmmimum if

VF (V) <8, A, (Vf(xV))z-5.

Assume that for x, y e {x eR": f(x)< f(XO)}

IVF (v)-Vf (x)], <L, |y —x],.

V£ (9)-V2f (x)|, <L|ly—x],-

Convergence to local minimum

x = x" —ZVf 1f HVf
X=X+ hpt, if ”Vf xk H2 <gand ' =4 (V f(xk)) < -0,

> &,
2

where h=26/L,, p* — eigen vector of V* f (x") corresponds to A" :

(Vf(x).p") <0,], =1,
This method will stop (find (&,5) local minimum) after N iterations

NSN(g,é)=(f(xo)—f(xl""almm))'Hlaxizgl;1 ’;?‘)

%

This 1s not an optimal method, but 1t 1s good for explanation the 1dea.

Convergence to local minimum

Indeed,

£ ()< f(xk)m{w(xk),pk}{_!{vz £()php e Lo <

<0 NS =M,

o 1(28Y . L(25) 26
sl 7)o eli) ot

Note, that 1t’s sufficiently to indicate that A . (Vz f (x"))2—5 , or to find

such p* (“pk H2 =1), that <V2f(x")pk,pk> <—6/2. One can do it by Lanczos

method with ~ 1/ matrix-vector V2 f (xk) p multiplications.

Convergence to local minimum
Note, that by using (Krylov’s type methods)

sz(x)v = V<Vf(x),v>,

sz(x)v 3 Vf(x+rv)—Vf(x)

T

and automatic differentiations one can calculate f(x), Vf(x) and V* f(x)v

for almost the same time (up to a constant 4 — 16) for all reasonable function

with known computational tree.

Note: Automatic differentiation 1s now widespread: Torch, Caffe, Theano,
TensorFlow. But only the last two libraries support the desired high-order

differentiation.

Convergence to local minimum

One can improve the ¢-part of the bound on N(&,5) from ~ &7 to ~ &7 by

using cubic regularized Newton method (Yu. Nesterov, B. Polyak, 2006;
Grapilia—Netserov, 2019). For that, we need to replace

:xk_évf(xk):arg%{ PO (o (3)ox =o'+ S

by (the complexity of this iteration 1s comparable with Newton’s 1teration)

x! :argmin{f(xk)+<Vf(xk),x—xk>+2l!<V2f(xk)(x—xk),x—xk>+%Hx—ka3}.

xeR" 2

3/2

Recall that for second-order methods this bound ~ ¢ 1s unimrovable.

Note, that for cubic regularized Newton method we can skip x**' = x* + hp”.

From the results above one may though, that
i we have ouly one stationary point (= local
minimum = global minimum), then it s not a

problem to find if.

This ts frue (f we mean criteria norm of the
gradient, but this 1s 1 general false 1f we

consider the criteria discrepancy i Function!

The meaning of criteria
For the moment for

f (x) — min

xeR"

we’ve considered two criteria of quality of approximate solution:

mln HVf H2 <g
and
f(xN)—f(x*)S E.

It seems that if f(x) has unique extremum = local minimum (that is conse-

quently global minimum), then these criteria are close to each other.

The meaning of criteria

(Yu. Nesterov, V. Skokov, 1980)
|

f(x) 4(x —1 +Z(x —2x’ +1) =
xl_l "‘Z(i1 —

Chebyshev
polynom

At point
x. =(LL...,1) (f(x)=0),

we have unique extremum = global minimum of f(x).

The meaning of criteria

If we put

2 =(=L1L...1) (f(x*)=D.

then gradient type methods guarantee small norm of the gradient, but not
small discrepancy 1n function value. In all experiments (with different GD

type methods and second-order type methods) under n =15 we have

v (+)

~10°,
2

but

f(xN)—f(x*)zl/Z

For the moment we counsider the only First
order method - gradient descent. It s optimal
for finding stationary points without any
additionally assumptions on problem
Formulations (high-smoothness). But we know
from convex opfimization that momenfuim
(impulse) schemes accelerate the convergence.

Wl«a/‘ l.S abou/' hoh-cohvex CaS-Q.P

Polyak’s heavy ball method

The considered above dynamical system dx/dr =—Vf (x) don’t have a me-

chanical intuition. In 1964 B. Polyak propose the following generalization

d’x dx
— ==V —p—.
dt’ f(x) P dt

The discrete variant of this system has a form
X =x" —hVf (xk) +,B(xk —x!)

For (strongly) convex functions this method under proper choice of param-
eters locally converges with best possible rates (see below). Globally 1t
converges 1n Chesaro sense like standard GD (E. Ghadimu et al., 2014).

Visualization: https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/

Polyak’s heavy ball method (non convex case)

In 1981 A. Grienwank show that if we consider

d’ d
(1)~ ==Vf (x) = p(1) -

where (1)~ f(x(t))—c (¢> f(x)) and p(t)= F(Vf(x(t))] with spe-

cial choice of F(), then x(7) when r — oo converges to such local mini-

mum x'*, that f (x"’c) <c.

In 2019 E. Diakonikolas and M. Jordan show that for discrete dynamic
under special parameters selection one can guarantee

: _2LNf
2~ N

min HVf (xk)

k=1,...,.N

Nesterov’s fast gradient (momentum) method

In 1983 1n PhD thesis Yu. Nesterov (supervisor was B. Polyak) proposed
the methods of type

x =x —th(xO),
x =Xt —th(xk + [, (xk —xk_l))+,6k (xk —xk_l).

For convex function this method converges under

k—1

% 'Bk_k+2

2LR*
N?

f(xN)—f(x*)S

The same results demonstrate heavy-ball method (with

pProper Parameters) tn average

httes://arxiv.ora/pdf/2002.0466%.pdf

https://arxiv.org/pdf/2002.04664.pdf

No acceleration tn theory for non convex

problems, but somefimes FGM works!

Protein Dockmg as OPLS force freld

Data Science applications

Math. Statistic. potnt of view

Assume the observed x,y related according to the model:

y = F(x,0) 4+ & Where F(x,0) — is known function (say, Neural
Networks) with unknown vector of parameters 6 (weights) and & —
is a Gaussian noise (unbiased). If we have many observations

yp = F(xg,0) 4+ &, k=1, ...,m, where & — i.i.d., then the best
possible way (Fisher’s theorem) to estimate 6 is:

— — — min .
Zka (24, 0)* — min

Machine Learning point of view

Assume that we want to find 0 that explained observed vy, x;
according to some unknown probabilistic low. We know nothing
about this low. Assume that the quality of 6 is measured according
to the loss function f(0) = E(,)|y — F(z,0)|*. Since we don't
know probabilistic low, we couldn’t minimize f(6):

f(0) = By f((z,y),0) — min . (2)
But we know realizations of random (y,x): {yx,xr}]-,. Based on

Monte Carlo approach we can build Stochastic Average
Approximation (SAA) of (2):

1 ™m
=—E (Zky Yk), EWr—m,\%mﬂ
™Tm — HcR™

(3)

How many terms we should take that optimal solution of (3) will be
e-solution (in function) of (2). If f(0) is convex, than m ~ n/e?. If
f(0) is pu-strongly convex (in 2-norm) then m ~ 1/(ue).

SAA Approach. The consequence from that is the following: if we
regularize (3) by ~ €||0]|3, than the exact solution of regularized
problem is O(¢)-solution of (2), when m ~ 1/¢%. That is n-times
better!!l So that is why one typically needs regularization.

SA Approach. In Stochastic Averaging approach to (2) we
consider (2) to be stochastic convex optimization problem and can
apply Stochastic Gradient Descend (SGD) for that. The idea of
early stopping is to stop in convex (not strongly convex) case after
N ~ 1/&? iterations, rather than N ~ n /2. This will have the
same effect.

Note: In general situation we also have that Early stopping of an
algorithm can be considered as an convenient (without unknown
hyperparameter of regularization) alternative to regularization!

The first observation: Early stopping regularization

ds
3
(validation - training), dB

Ll L) Al Al Al ¥ ¥ ¥ ¥
1 10 100 1000 10000 1 10 100 1000
iteration iteration

Figure: Residual model overfitting, 50% of original data used as training
set

training

ds
- training), dB

validation

(validation

JL 1 | 100
iteration iteration

Figure: Residual model overfitting, 10% of original data used as training
set

So, it seems, that we can reduce the number of terms in the
sum ~ 10 times without significant loss in a quality of test
error! This may valuable reduce the complexity of
optimization procedure!

training), dB

® _apJ \ SN — _
L .30 training

validation 10 4

(validation -

¥ T ¥ L))) ¥ T L) Y L)
1 10 100 1000 10000 1 10 100 1000 10000
iteration iteration

Figure: Residual model overfitting, 1% of original data used as training
set

So, if we don't have large enough training set it is worth to
use ‘Early Stopping’ regularization trick. That is to stop
iteration procedure much earlier!

Non-convex stochastic optimization

m Consider the problem of searching a local minimum of the
following function:

where f(x) is non-convex. For simplicity we assume that each
fi is L-smooth. The natural and most straightforward choice
of the stochastic gradient for this problem is g(z) = V f¢(z)
where £ is a random variable with uniform distribution on
{1,...,m}.

m Another situation that we are interested in is the case when

f(x) is L-smooth and can be written as an expectation of
non-convex functions:

f(x) = E¢[f(x,8)].

In this situation one can use g(z) = V f(z, &) as a stochastic
gradient.

In both cases the theory that we discuss is based on the following

assumption: the cost of one stochastic gradient computation is
O(1) and its scales linearly. For both cases we additionally assume
that for some constant o2 the variance of g(x) is uniformly upper

bounded by o?:

E ([l9(z) — V@)II} | 2| < 0.

Optimal variance reduced scheme for
non convex Sum-fype smooth
Prob(-ems

SPIDER

In the tab
T that E|

Vf(@)]3] <€

e below we summarize complexity bounds of finding such

Assumptions

Lower bound

Deterministic oracle,
f(x) is L-smooth

0 (L(f(:v;)—f*)>

f(x) is L-smooth,

B [lg) - V@R 2] <ot | O (FUE) = f)maxi o)
fi(x) is L-smooth, LOF(20)— F(2*)) mind v/mmaxd 1.
[”g(x) Vf(az)llﬁ!a:} < o Q((@)= 1)) mind vim max{ E}})

General scheme of the optimal first-order method for non-convex

optimization

Input: learning rates {hy }xr>0 satisfying hy < % starting point
¥ € R", stopping criterion C

- for £k=0,1,2,... do

Get g* = g(zF)

if C holds then

N ok

break

else
k1

end if

end for
return x

=¥ — hyg"

e o XN R D

N

p—t
—

Gradient Descent

1

k __ k .

is optimal in the deterministic case, i.e. in order to reach
IV f(z™V)]|2 < e it requires

0, (L (f(g;O) _ f*)) Iterations.

£2

m Yair Carmon et al. “Lower bounds for finding stationary points
i". In:Mathematical Programming (2019), pp. 1-50.

Stochastic Gradient Descent

r

ef 1
g = Vf<:ck,{ff};;1>‘Lf;;ﬂ:ck,@),

4), 1 .
r- = 1aXx <\17 hy @Exﬂam fur/‘l«mr

is optimal in the second case, i.e. in order to reach
E [|Vf(zV)]5] < &* it requires

(1 o02)

27 4
\8 & /

0, ((L (f(a:o) — f+) max <

>> oracle calls.

m Yossi Arjevani et al. “Lower bounds for non-convex stochastic
optimization”. In:arXiv preprint arXiv:1912.02365(2019).

SGD with Without Replacement sampling

Input: learning rates {h r }s k>0, starting point ¥ € R™, batch size
r > 1, number of epochs S

Set z) = ¥

for s=0,1,2,... K —1 do
Generate random permutation {is 1,...,%s ., of the set {1,...,m}
Set | = [m/r]

for k=0,1,....l —1do
Set #*¥ = min{r,m — kr}

k
TS
Compute g¢ = - >° Vfi, .y, (25)
S le

k+1 _ _k k
xs—i_ — Ly _h3>kgs

end for
0o _ .1
xs—l—l — 333
end for

l
return =5

For non-convex objectives there is no theory for this method, but in the
strongly convex case it was shown recently that it outperforms standard
SGD with i.i.d. sampling (see Rajput et al. (2020)): it works with

O (4%) rate instead of O ().

N2

SPIDER
SAGA type method

SPIDER:

(g2
r. =1 = max<\1,@)>a
g = min{r,m},
% zrj Vfe. . (%), if r < m and r divides k,
g" = vjf_(;k), it m <r and m divides k,
Vfe, (%) — V fe, (xF71) + gF~1 otherwise
hpy =h = 1

5L./q

m Cong Fang et al. "Spider: Near-optimal non-convex

optimization via stochastic

nath-integrated differential

estimator’. In:Advances in Neural Information Processing
Systems. 2018, pp. 689—699.

SPIDER is optimal in the third case, i.e. in order to reach
E [|Vf(@"Y)|5] <e? it requires

O (L(f(:vo) — /@) mi121 {m’ et {1’ Z}}) oracle calls.

E

m SPIDER requires very small stepsizes in theory.

m In the recent works Wang et al. (2018, 2019) authors
proposed simpler version of SPIDER called SpiderBoost that
works with constant stepsizes.

Input: learning rate h > 0, epoch length T, starting point 2° € R",
batch size » > 1, number of iterations K

1: for £=0,1,2,... do

2: if Kk mod T =0 then

3: Compute g% = V f(zF)

4: else

5: Uniformly randomly pick set Iy from {1,...,m} (with
replacement) such that |Ix| =r

6 Compute g* = 1 3 (Vfilah) = Vfi(h 1)) + g

1€y,

7 end if

8: xFtl =2k — hot

9: end for

10: Pick & uniformly at random from {0,... , K — 1}
11: return z°

SpiderBoostM

Input: learning rate h > 0, epoch length T, starting point 2° € R",
batch size r > 1 number of iterations K, parameters

{/\k}k 17{ﬁ
1: Set y¥ = 2"

2: for k=0,1,2,... do
3: X1 = I‘(A;+1)2/T‘|+1

4: 28 = (1 — app)y® + g a”

5. if £ mod T = 0 then

6: Compute g% = V f(2")

7. else

8: Uniformly randomly pick set I from {1,...,n} (with
replacement) such that [I| = r

9: Compute g’C = % > (sz(xk) _ Vfi(:ck—l)) +gk—1

1€l
10: endif

11: zhFtl =aF —)\ gF

12: yk+& — ok _ Bi k_+_BA(Akg)

13: end for

14: Pick & uniformly at random from {0,..., K — 1}
15: return 2°

For both methods it is proven that they have complexities

O (m'2L(f(z%) - [)e72).

But 15 convex case SpiderBoostM

behaves (ike Accelerated method!

Not optimal, but classical VR-method: SVRG

Input: learning rate h > 0, epoch length T, starting point z¥ € R",
batch size r > 1
1: ¢pg = xg = 2V
2: for s=0,1,2,... do
3: for £K=0,1,2,...., T —1 do
4. Uniformly randomly pick set I from {1,...,n} (with
replacement) such that |Ix| =7

5. gh =1 Y (Vfi(ah) = Vfi(gs)) + VI (6s)

'I:GI],;

. k+1 _ .k k
6: riT =al — hg
7: end for

. 0 .k
8: ¢S+1 — xs—{—l — Ly
9: end for

Reddi et al. showed that SVRG with » = m¥? and T' = m? has the
following complexity:

O (m”*L(f(x°) - f*)e?)

We've Just talked about finding stationary
potnts, but one can show that the developed
methods can be modified tn such a manner
that we will have the same n ferms of ¢,
n (up to a logarithmic factors) complexity
(SAGA type method, SPIDER):
hitps://arxiv.ora/edf/1806.083F82.pdF
hitps://arxiv.ora/pdf/180F.01695.0df

https://arxiv.org/pdf/1806.08782.pdf
https://arxiv.org/pdf/1807.01695.pdf

Unfortunately, variance reduced
schemes n Prac{'[c-e works /'yPica”y

worthier then funed SGD and its
(momentum) Adaptive variants!

0.65

055

o
S
(]

Training Error
o
o
()]

025

L 1
0 100 200 300 400
Epochs

Figure 1: Training error using SGD with mini-batch size 32 to train an 8-layer convolutional neural network
on CIFAR-10 [Kri09]. The first 90 epochs use a learning rate of s = 0.006, the next 120 epochs use s = 0.003,
and the final 190 epochs use s = 0.0005. Note that the training error decreases as the learning rate s decreases
and a smaller s leads to a larger number of epochs for SGD to reach a plateau. See [HZRS16| for further
investigation of this phenomenon.

Figure: https://arxiv.org/pdf/2004.06977 .pdf

l[dea of Adaptation

Rough Idea: Sometimes in different algorithms with auxiliary 1D
line search (or several such searches) it is better to use rough
solution of 1D auxiliary optimization problem. It may significantly

accelerate algorithm.
Simple example. In the worse case

ok = ok = Y f(aF) = 2t~ PV f(ab)
hy, = argming, > f(-?? — hV f(z))

where [|[Vf(y) = Vf(z)ll2 < L|ly — x[]2. Hence

iLHVﬂ:c’f)H% < f(a%) = f@™) < fa¥) = fla),

V
L~ fl(l f)(sz*)’ (Polyak—Shor)

rk _ k—17v kY _v k—1 o]
L~ IIxV_f(a:k)]i(éf)(a:k_];(;IEI%). (Barzilai-Borwein)

Adaptive Gradient Descent (Malitsky & Mishchenko (2019))

2V € R N >0, Oy = +00, ! =2V — AoV f(2")
- fork=1,2,... do

1
2
3: Ar = min 1+ 601\ |l
g {\/ T Uk—14k 1’2||Vf(-’1?’“)—Vf(fB’“‘1)||}
4
5

6: end for

Authors prove O (¢~ 1) rate in the convex case and O(kIne™1) in
the strongly convex case where k is the condition number of the
problem. No convergence guarantees in the non-convex case.

Fast gradient method with 1D-search (Yu. Netserov et al., 2018)

k+1

X =Tl +(1 Tk+1)y Tk+1€Argm[})rll]f(TZ +(1 T)y)a

yk+1 e h,. Vf (xk+1) h. € Arg mlnf (xk+1 —th(k+1))

Zk+ = 7 _ak+lvf(k+1)

= : +\/ : +a;, a,=0,

4L

k+1

2L

k+1

2
2

(

\

2 <L f(ykﬂ)gf(k+1 ”Vf k+1

o

Convergence result of Nesterov’s method

For convex function f (x) (there exists also strongly convex variant)

2LR’
N?

F(yY)=f(x)s
For non convex function f(x) (see also Ghadimi—Lan, 2013; Catalyst, 2018)

> _2LAf
" N

min HVf(yk)

k=1,...,.N

In both cases these bounds unimprovable up to a constant factors. Note that

close approaches proposed A. Nemirovski in the period 1978—1984.

In practice the behavior of this method 1s close to the family of conjugate

gradients methods.

Accelerated alternating minimizations method (S. Guminov et al., 2019)

This method looks the same as Nesterov’s FGM with 1D-search, but

yk+1: _hk+1vf(k+1) Zk+ = _ak+1vf(k+1)

are replaced by

y EAI'g mln f() H :Zk _ak+lvi(k+1)f(‘xk+l)’

(k+1) xk+l)

where

Si(xk+l)=xk+1+span{ej,jeli} i(k+1) e Arg max HVl.f(xk“) 2

i=1,....m

.
The rates of convergence remain the same up to a

L — mL, m1s a number of blocks (i =1,...,m).

AdaGrad-Norm (R. Ward et al., 2019)
The problem of parameters selection can be partially solved by using adap-
tive version of SGD (this line starts in stochastic convex optimization from
AdaGrad, 2011). For example (b, — large enough),

bl =b} + fo(xk,{ék”};) A Tl f(164,)

converges as (skip expectation)
o Af (b j
+ Ln
((f Z j VrN]

This result corresponds to what we’ve obtained above by proper SGD!

Most popular 1n practice nowadays are accelerated versions of SGD (see
Deep Learning book and http://ruder.io/optimizing-gradient-descent/): Ad-
am, AdaMax, Nadam, AMSGrad, Unfortunately, there are lacks of theo-
retical results for these methods. This direction 1s actively developed now 1n
the works of: K. Levy, V. Chevher, F. Bach, G. Lan et al.

min HVf

k=l,....N

mg = vg =0 g* - batched stochastic gradient
k
k k—1 k ~ k m;
m, — ﬁlml —l_(]._/Bl)g/) i —].—Iﬁk
1
k k—1 k\2 k v
- < I
VI pm— /62\’1 _|_ (]- - B2)(g,) ’ / 1 o /Bk
2
xkTl = xk ! r?lf‘, i=1n, 6=108

B =09, 3, =0.99 u v = 0.001.

Sashank J. Reddi, Satyen Kale n Sanjiv Kumar, ON THE CONVERGENCE
OF ADAM AND BEYOND, ICLR 2018.

Alexandre Defossez, Leon Bottou, Francis Bach, Nicolas Usunier, On the
Convergence of Adam and Adagrad, arXiv preprint, arXiv:2003.02395

Yk

AMSGrad

ﬁln;(f(_ll (]' o 61)g1 9
Bovi 4 (1 - B2)(8)°

(1 — 51)\/1 — 3.

Second-order schemes

Hendrikx, H., Xiao, L., Bubeck, S., Bach, F., Massoulie, L. (2020).
Statistically Preconditioned Accelerated Gradient Method for
Distributed Optimization. arXiv preprint arXiv:2002.10726.
Kamzolov, D., Gasnikov, A. (2020). Near-Optimal Hyperfast
Second-Order Method for convex optimization and its Sliding.
arXiv preprint arXiv:2002.09050.

Lucchi, A., Kohler, J. (2019). A Stochastic Tensor Method for
Non-convex Optimization. arXiv preprint arXiv:1911.10367.

Basic idea:

LUERT”

f(z) = %ka(a:) — min .
k=1

In different second order schemes we have to minimize at each
iteration something like

Fa) (T (), o) o (92 (2 (a—a¥), x—x‘“>+%l\x—w’“l|§’-

- - M
PRV F(@), 2 =ab) 4 o (V2) (b, o) o

In full gradient/Hessian version:
Vf(z") = V"), V2 f(a*) = V2 f(a").

In standard randomized version:

~

1 « - 1 <

VIEh) = =) Vi), ViEh) ==) V2 feq(").
=1 =1

But the sensitivity of different algorithms to @f(a:k) higher than to

V2 f(x*). This is not obvious. Newton method break our intuition

here. But Newton method is not the method we'd like to apply...
So we may use this fact as follows:

~

Vf(*) = V), T2 R) = -3 V().
[=1

How to choose 7?

From the general theory we may expect that » ~ 1/¢%, where ¢ is
the desired accuracy. So 74,44 ~ 1/€° indeed, that is typically not
smaller then m (number of terms in the sum)! But rgess ~ 1/¢
arXiv:1810.03763.

Another argument how to choose rpy.ss is complexity argument.
We need O(rn?) arithmetic operations (a.0.) to calculate Hessian.
At the same time we need O(n?) a.o. to ‘invert’ Hessian (solve
auxiliary problem). From this we have

T = n.

Note: There appears very practical version of Strassen’s algorithm
that improve O(n?) — O(n'°827).

Huang, J., Smith, T. M., Henry, G. M., van de Geijn, R. A. (2016,
November). Strassen’s algorithm reloaded. In SC'16: Proceedings
of the International Conference for High Performance Computing,

Networking, Storage and Analysis (pp. 690-701). IEEE.

For the moment we consider
adaptive method For smoothness
parameter L. But what ts about

parameter r?

. . /J
To answer for this question lef s
consider the simple SGD 1n convex
case (accelerated and non-convex

ones we briefly describe at the end)

Parallelization and minibatch’ing

Assume that

E. |V f(x¢&)|=Vf(x)

(V.

(x.6)-V H<D

Let’s introduce (here we can use full parallehzatlon')

Vor (xe),) =T 2V p ()

where {5’ }r —1.i.d. (with the same distribution as &). Note that

[=1

B A f(x,{gf};‘zl)-w(x)

2

2

<2

r

Hence for arbitrary L >0 and all x*,v=x"" —x*

(vr (). f(xk,{gf};‘_l),v>g?LL“'vz rle (e)-vr(+)

'

5/\'+l

2

FZME
2 2

”

If for all x,y
IVf ()= Vf (x)], < Ly =,

then for all x*, x*"

f(x"+')£f(x")+<Vf()t =k >+§

2
k+1 k
Ao TA Hz

Hence

f(xk+1) < f(xk)_|_ <'Vx f(xk,{é;kﬂ,l}::l),xkﬂ —xk>+ 2L

2
X —x H + 0% (%)
2 2

Important fact follows from (*): if E [5"“] = ¢/2 then for batched gradient
descent

1 r .
K+l _ k. k| gk+1
X =x —2Lfo(x ,{é‘ }1=1)

converges according to the following estimate

E[f(f”)]—f*s L}sz +‘2€.

So 1t 1s natural to choose r such that

2

, 1 |¢ : D
E:E[y‘ |=E - vxf(x",{g’}[:l)—Vf(x")2 =,
!) i
r=—|
Le

All these things can be done for accelerated gradient method!

Drawbacks and the main idea

Even 1n non accelerated (most simple) variant the method need to know L:

1 r -
K+l _ k. k | gk+1
XU =x _ZL fo(x ,{5 }[1)

and D:
D

Assume that we know D, — the lower bound on D (D > D,). The main idea

is to choose L' from: L' .= [} /2; ' .= 2L*, where r**' = (DO / L"“g), until

f(xk+1) < f(xk)+ <rkv+lx f(xk’{é;kﬂ,[}"k“ j,xkﬂ _ 4 > n o) bk ka+1 o Hz N E,I(**)

r

=1 2 2
holds true! One can show that the number of iterations will be
O(DLRZ/(DOE)) and oracle calls — O(DRz/gz).

Note T: [f we want to estimate the rate of convergence we should
additionally assume: LK1 > LF (V. Spokoiny et al., 2019)

Note 2: We could take r**' =2D,/(L*¢) // better in practice

Comments
So we’ve just described simple approach that allows to make fully adaptive
stochastic gradient descent from classical gradient descent with

(1 P2 A (2
O LR” D iterations and O DK

& Dy, N
The last bound 1s unimprovable. Note, that we can fully parallelize calcula-
tions at each iteration (problem 3)! Moreover, by using accelerated gradient

descent one can improve the number of 1terations (problem 2)

2
o[\/LR D J
& D,
This bound is unimprovable up to a factor \/D/D, — payment for the me-

thod to be fully adaptive (problem 1).
The main drawback: We have to know the exact values of goal function
f(x)at (**). Typically in this case we have real (non stochastic) gradient.

stochastic gradient calculations.

flz) =Ef(z,). (23)

In this case we estimate the function as a sample average

f@,{&}i=1) Zf$ &1)

and use 1t 1n adaptive procedures. In this case we interpret
Lj. as the worst constant among all Lipschitz constants
for f(z, &) with different realization of . Indeed, if L
satisfies the following

FaFh) < f@F) + (VF(a*, €), 2" — 2b)
-1 Lk+1||$k+1 — .EkH% + 5/2

Then 1t satisfies

FEMGTHEY) < FEEAGT R
(VI f AT, 2T - 2t

+ Ly ||zFth — 2|2 + /2. (24)

If, e.g, (23) holds we replace adaptive procedure in the
algorithms by (24).

Note that if we don t have an access o stochastic
gradient, but have an access to realization (unbiased)
f(x, &) (see Data Science applications below), then in

batched gradient descent and n (24) we may use (Fhis
Formula works also tn non smooth case!)

Vf(x,f . — (g, 8)) :2 nf(X+T€, 5) —f(X— e, 5)6

2t
where e choses at random (ourselves) from the unit sphere
or from coordinate orts. Aud we assume that x*1 — x

parallel to e* (sample of e at k-th step)
arXiv:170F.08486

The rate of convergence will be ~ n times slower.

https://arxiv.org/pdf/1707.08486.pdf

Another way to choose
= 2D**1/(L*¢) adaptively is to

estimate iw an adaptive manner D1

k+1

D! 2 [VAK, §4 M) = VA3

rk+1 — 1

k+1

2 VOt g

/i) =

,,k+1

. / .
Since we don f know 1f advance rk 1 we put here !t = r4/2

Close approach: https://arxiv.ora/edf/2005.01097F.2df

These all hold true for gradient-free schemes (see above)

https://arxiv.org/pdf/2005.01097.pdf

REMIND THAT:

Data Science applications

F(x) = = > i)

ln this case i (24): L = max L,

i=1,...n

VA, &) = Vi)

Adaptive SGD

Dvurechensky Pavel (HSE, IITP, WIAS dvureche@wias-berlin.de)
Gasnikov Alexander (MIPT gasnikov@yandex.ru)
Spokoiny Vladimir (spokoiny@wias-berlin.de)

mailto:dvureche@wias-berlin.de
mailto:gasnikov@yandex.ru
mailto:spokoiny@wias-berlin.de

Let us consider the following minimization problem

min : 1

min f(y) (1)
where f(y) is convex function and its gradient is Lipschitz
continuous w.r.t. || - ||2 with the constant L :

IVf(z) =Vi)ll2 < Lyllz =yl

We assume that the access to the objective f is given

through stochastic oracle Vf(x,&), where £ is a random
variable. The main assumptions on the stochastic oracle

are standard for stochastic approximation literature Ne-
mirovski et al. (2009)

IV f(2,€) = Vf(2), E(|Vf(z,€) - Vi(@)[3) <D. (2

We start with stochastic gradient descent with general
stepsize h

P =2k — nVTf(ak (L), (3)
where V7" f(z,{&}]_,) is a stochastic approximation for
the gradient V f(x) with mini-batch of size r

"f@ & t=1) va z,81),

where each stochastic gradient V f (. &) satisfies (2).

Lemma 1. With step size h = ﬁ in stochastic gradient

descent (3) the following holds
1
F@1) — f(a) < 97 F* (6 Vi) I3 + 502,

where (5,%+1 = HV’“f(& {ff“}l) = Vi@®)|3.

Algorithm 1 Stochastic Gradient Descent

Require: Number of iterations /N, variance D, Lipschitz constant
L, accuracy e.
1: Calculate batch size

r = max{D/(Le), 1}
2: for k=0,..., N —-1do
3:
1
A A U CAR Can 1Y

4: end for N
. =N 1 k
Ensure: ' = N Zkzlzc :

Theorem 1. Algorithm 1 with stochastic gradient oracle
calls T' = O (Dﬁz), batch size » = max{D/(Le), 1},

number of iterations N = O (LfQ) outputs a point z%

satistying

Lf(2Y) — f(z*) <e. (6)

Acceleration (see Algorithim 3 below)
Algorithm 1 Stochastic Gradient Descent

Require: Number of iterations /N, variance D, Lipschitz constant
L, accuracy e.
1: Calculate batch size

r = max{D/(Le), 1}
2: for k=0,..., N —1do
3:
1
A A U CAR Can 1Y

4: end for N
. =N _ 1 k
Ensure: ' = N Zkzlm :

Theorem 1. Algorithm 1 with stochastic gradient oracle
calls T = O(D}§2>, batch size » = max{D/(Le), 1},

€

number of iterations! O (\/ L R? /8) outputs a point zV
satistying

Lf(zY) — f(a*) <e. (6)

Algorithm 2 Adaptive Stochastic Gradient Descent

Require: Number of iterations IV, accuracy &, Dy, initial guess L.
l: for k=0,..., N—1do
2: Lk+1 .= Lk/4

3: repeat
451: Liyq :=2Lk 1
re+1 = max{Do/(Lgy1€), 1}
6:
R T A G R
7 until
(k+1) < f(:z:k) +<Vrk+1f(£17 {§k+1 Tk+1) :E —:Ek>
+ LipallzF ! — %12 + /2 (1)
8: end for

_ N
Ensure:) = % Zk—l zk.

Algorithm 2 Adaptive Stochastic Gradient Descent

Require: Number of iterations IV, accuracy &, Dy, initial guess L.
l: for k=0,..., N—1do
2: Liyq: =L/~

3: repeat
451: Liyq :=2Lk 1
re+1 = max{Do/(Lgy1€), 1}
6:
R T A G R
7 until
(k+1) < f(:z:k) +<Vrk+1f(£17 {§k+1 Tk+1) :E —:Ek>
+ LipallzF ! — %12 + /2 (1)
8: end for

_ N
Ensure:) = % Zk—l zk.

Algorithm 3 Adaptive Stochastic Accelerated Gradient
Method

Require: Number of iterations N, Dg accuracy €, 2 > 1, Ag = 0,
initial guess Lg.
l: for k=0,...,N —-1do
2 Lk+1 = Lk/4.
3: repeat
4
5

Lgty :=2Lk 4

ap+1 = (1+ \/1 + 8AkLi41)/(4Lk41) 5 Arg1 = Aptagrs

6:
re+1 = max {Qagy1 Do /e, 1}
7
v = (appru® + Apa®) Ak
8: uk+l — o F gy VEH f(yk+1 {€k+1 :;Ll)
9:
Pt = (a1 uF T + Aga®) /A
10: until
f@™h) < fy*hH+

(VTk+1 f(yF+1, {£k+1 Tk+1) gh+l _ g ktlyy

Lis1[|z"Ft = "2 + QDo /(Li 41k 41) (15)
11: end for

Ensure: =V

Algorithm 3 Adaptive Stochastic Accelerated Gradient
Method

Require: Number of iterations N, Dg accuracy €, 2 > 1, Ag = 0,
initial guess Lg.
l: for k=0,...,N —-1do
2 Lk+1 = Lk"2
3: repeat
4
5

Lgty :=2Lk 4

ap+1 = (1+ \/1 + 8AkLi41)/(4Lk41) 5 Arg1 = Aptagrs

6:
re+1 = max {Qagy1 Do /e, 1}
7
v = (appru® + Apa®) Ak
8: uk+l — o F gy VEH f(yk+1 {€k+1 :;Ll)
9:
Pt = (a1 uF T + Aga®) /A
10: until
f@™h) < fy*hH+

(VTk+1 f(yF+1, {£k+1 Tk+1) gh+l _ g ktlyy

Lis1[|z"Ft = "2 + QDo /(Li 41k 41) (15)
11: end for

Ensure: =V

Practical aspects

flz) =Ef(z,¢). (16)

In this case we estimate the function as a sample average

fz, {&}ti=1) Zf

and use it in adaptive procedures. In this case we interpret

L. as the worst constant among all Lipschitz constants
for f(x,&) with different realization of £. Indeed, if Ly
satisfies the following

fa®h €8 < f(a®, €87 + (V (2", €), 2™ — 2*)
+ Ly g |l — 2815 + /2.
Then it satisfies
FEMAGTHE) < fEEAGTHE+
<vrk+1 f({fk_H 7“k-|—1)7xk—|—1 . Zlfk>
+ L ||z — a3 +e/2. (17)

If, e.g, (16) holds we replace adaptive procedure in the
algorithms by (17).

Algorithm 4 Non-convex Stochastic Gradient Descent

Require: Number of iterations NN, variance D, Lipschitz constant

L, accuracy €
1: Calculate
r = max{12D/(g?), 1}

2: for k=0,..., N—1do

3:
1
k+1 __ _k k k+1
P = gk VT, ()
4: end for
Ensure: = = arg mln |V f(xF)]]2.

k=1,.

Theorem 2. Algorithm 4 with the total number of stochas-
DL(f(wO)—f(:v*))) and

64

tic gradient oracle calls T = O(

number of iterations N = O (L(f(moiz_f(m*))> outputs a

point 2 which satisfies

[Vf(@EY)]2 <e. (19)

Algorithm 5 Adaptive Non-convex Stochastic Gradient
Descent

Require: Number of iterations N, Dg, accuracy &, initial guess Lg
1: Calculate
r = max{8Dg/(¢?), 1}

2: for k=0,...,N —1do
3: Lk+1 = Lk/4
4: repeat
D: Lk_+_1 = 2Lk+1
6:
1
A e AN [CAR (S Y
2L,
7 until
M) < F@h) + (Ve f R g T A, 2R - 2k
2
€
+L k+1 _ _k 2+
ool =2 + o —
8: end for
Ensure: & =arg min ||[Vf(z%)||2.
k=1,..N

Theorem 3. Algorithm 5 with expected number of stochas-
~ 0 N
tic gradient oracle calls T' = O (DOL(f(w)= f(=))) and

84
= 0 N
expected number of iterations N = O (L(f (z)egf (z)))
outputs a point z satistying

IVI(@)]l2 <e.

2.0

Objective
=
()

-y
(=

0.5

Logistic regression

- L] Alg. 3
! « Alg.?2
' Alg. 5
* e Adam
. « Adagrad
" g
..:‘
o::r
\-
10° 10! 102 103 104
lteration

(a) Objective

© © © o o
vyl O N oo v

Testing accuracy

o
>

0.2

0.1

Logistic regression

— — "

A
. e Alg.3
) Alg. 5
i « Adam
. « Adagrad
100 10! 102 103 10*

Iteration

(b) Testing accuracy

Objective

r R

2.0

1.5

1.0

0.5

Fully Connected Relu

e Alg. 3
« Alg.2 |

Alg. 5

| « Adam
! « Adagrad |

)]

- : :o’.‘:.M\ %) . ‘

100 10! 102 103

Ilteration

(e) Objective

Testing accuracy
o o o o o L
v o ~ o © o

o
>

o
w

Fully Connected Relu

. -::"./-’ﬂ—-_—_ ‘
‘ e ey, ey
1 . - X !
=N e e Alg. 3
‘ . Alg. 2
—s Alg. 5
« Adam
. e Adagrad |
10° 10! 102 103
Iteration

(f) Testing accuracy

2501

2.25

2.00

Objective
-
("
o

-
N
wn

1.00

0.75

0.50

Alg. 3
Alg. 2
Alg. 5
Adam

Adagrad

CNN

10°

10!

102

lteration

103

(g) Objective

104

0.50

0.45

Testing accuracy
i © o i ©
N N w w By
o w o wn o

o
-
(9,

0.10

CNN

Alg. 3
Alg. 2
Alg. 5
Adam
Adagrad

100

10! 102 103 104
Iteration

(h) Testing accuracy

2501

2.25

2.00

Objective
-
("
o

-
N
wn

1.00

0.75

0.50

Alg. 3
Alg. 2
Alg. 5
Adam

Adagrad

CNN

10°

10!

102

lteration

103

(g) Objective

104

0.50

0.45

Testing accuracy
i © o i ©
N N w w By
o w o wn o

o
-
(9,

0.10

CNN

Alg. 3
Alg. 2
Alg. 5
Adam
Adagrad

100

10! 102 103 104
Iteration

(h) Testing accuracy

Adaptive Catalyst

Gasnikov Alexander (MIPT gasnikov@yandex.ru)
Ivanova Anastasia (HSE, MIPT anastasiya.s.ivanova@phystech.edu)

mailto:gasnikov@yandex.ru
mailto:anastasiya.s.ivanova@phystech.edu

To propose the main scheme of the algorithm we need to
define the following functions:

L
Fr.(y)=f) + 5 lly —ll3

Algorithm 1 Monteiro—Svaiter algorithm

1: Parameters: 2", 9", Ay =0
2: for k=0,1,...,N —1do

3: Choose Lj; and y**1 such that
L4
IVFp, ., e (g2 < TH?JH1 — "y,
where
1/Lk_|_1 + \/1/[/%_'_1 + 4Ak/Lk_|_1
A1 — ;
2
App1=Ap + ap41,
A a
k+1 ko k k+1 g
X - + 2z
Akt / Akt
4. Zk_l'l = Zk — ak_|_1Vf (ka)

5. end for

Theorem 1. (Monteiro and Svaiter, 2013, Theorem 3.6)

Let sequence (¥, y*, 2¥), k > 0 be generated by Algorithm

1 and define R := Hyo — x,||,. Then, for all N > 0,

%Hfﬁww@+AN«f@¢wnﬂa»

|

k R2
+ — ZAkLk”y — & HQ — 2 . (4)
f(N)—fuw<:R2 Y —a, <R
/ = 24N <ll2 =
N 2
ZAkLk Hyk — CBkHQ S 2R2. (6)

k=1

Lemma 2. (Monteiro and Svaiter, 2013, Lemma 3.7 a))
Let sequences { Ak, Lr}, k > 0 be generated by Algorithm

1. Then, for all N > 0,
N 2
() "

»-Iklb—‘

Algorithm 2 Adaptive Catalyst

Require: Starting point 2 initial guess Ly > 0; parame-

10:
11:
12:
13:

ters a > 3 > v > 0; optimization method M.
for k=0,1,...,.N —1do
Liy1 = p -min{aLly, L,}

t=20
repeat
t:=t+1
Lj+1 :=max{Lk4+1/B, La}
Compute
1/Lyy1 + \/1/L;2c+1 + 4 Ak /L +1
Ak+1 — 9)
Apy1 = Ak + ap41,
A a
k+1 _ ko k k+1
x = + —2".
Apin’ " Apn

Compute an approximate solution of the follow-

ing problem with auxiliary non-accelerated method M

k1 :
Y ~ argmin Fy, | et (y)

y

By running M with starting point z**! and
output point y*t! we wait NV, iterations to fulfill
adaptive stopping criteria

L1
IVFp, ., ane (yFTH)]|2 < THZ/k+1 — s,

until ¢ > 1 and Ny > v- Ny_q or L1 = Ly
D VT (o)

end for

Output: y~+!

Proposition 3. The convergence rate for the method M
for problem

in F
min (y)

can be written in the general form as follows (for random-

ized algorithms, like Algorithm 4, this estimates holds true
with high probability)

C ,uFN)
F(yN) = F(y,) =0 (LpR?*) min{ —, ,
(y) (Y) (Lr)mm{N exp(CnLF>>
where v, is the solution of the problem, R = ||y — y.||,
function F' is pup—strongly convex and Lp is a constant
which characterized smoothness of function F'.

/

Typically C,, = O(1) for the standard full gradient first
order methods, C,, = O(p), where p is a number of blocks,
for alternating minimization with p blocks and C,, = O(n)
for gradient free or coordinate descent methods, where n
is dimension of .

Theorem 4. Consider Algorithm 2 with L, < L, for solv-
ing problem (1), where () = R", with auxiliary (inner) non-
accelerated algorithm (method) M that satisfy Proposi-
tion 3 with constants C), and L such that Ly < Ly < L,,.

Then the total complexity of the proposed Algorithm 2
with inner method M is

5 / 2
O(C’n-max{ ﬂ"/ﬂ}.\/LfR).
Lf Ld 3

— Gradient Descent (GD)

----- Steepest Descent (SD)

A MSSDa=283=13~=1.4
-v-M-SSDa=3,=2,vy=14
-x-M-SSD a=6,=3,y=2
4-M-SSDa=2,=15,v=1.3
—&— M-S GD

functional suboptimality

¢ ~
".‘ Y -

O ' .A;‘.' -ﬂ:*:\“r&'.‘f-.":, Ky _1_._.*:,:
0 500 1,000 1,500 2,000
1terations

Fig. 2. Logistic regression (12) with ala dataset from
LIBSVM repository.

To apply M-S envelop for non-convex case

we need one Frick

z,y)
u,t

102 — Alternating Least Squares
Monteiro-Svaiter ALS

-A- =12, 4=119,v=1.03

-4 a=13,=12,7v=1.1

W-a=115,=112,yv=1.1

100 G

functional suboptimality (log-scale)

10
101
10—2 -."f',
0 300 600 900 1,200 1,500

iterations

Figure 2: Matrix completion problem (13)
with different («, 3, 7).

~ N
Jr+1 ~ argmin F; 77 (y)
y

Yp+1 = aIg min{f(y) | Yy € {yk, §k+1}}

) Local SGD M-S L-SGD

§ 101 R a— 200 -Ak T = 200

éo —4—7=10 -4-7=10

S -7 =2 ‘T =2

< 10Y

& :

= 107!

2)

o) \

‘é 102

= e T e ~ 7"

= —3 :

.8 10 R b e e I

‘N :

£ 10 - o ---- -

0 450 900 1,350 1,800

1iterations

Figure 3: Regularized logistic loss (14) for
different synchronization intervals 7.

Popular nowadays Federated Learning

